Hippocampal slow oscillation: a novel EEG state and its coordination with ongoing neocortical activity.
نویسندگان
چکیده
State-dependent EEG in the hippocampus (HPC) has traditionally been divided into two activity patterns: theta, a large-amplitude, regular oscillation with a bandwidth of 3-12 Hz, and large-amplitude irregular activity (LIA), a less regular signal with broadband characteristics. Both of these activity patterns have been linked to the memory functions subserved by the HPC. Here we describe, using extracellular field recording techniques in naturally sleeping and urethane-anesthetized rats, a novel state present during deactivated stages of sleep and anesthesia that is characterized by a prominent large-amplitude and slow frequency (< or =1 Hz) rhythm. We have called this activity the hippocampal slow oscillation (SO) because of its similarity and correspondence with the previously described neocortical SO. Almost all hippocampal units recorded exhibited differential spiking behavior during the SO as compared with other states. Although the hippocampal SO occurred in situations similar to the neocortical SO, it demonstrated some independence in its initiation, coordination, and coherence. The SO was abolished by sensory stimulation or cholinergic agonism and was enhanced by increasing anesthetic depth or muscarinic receptor antagonism. Laminar profile analyses of the SO showed a phase shift and prominent current sink-source alternations in stratum lacunosum-moleculare of CA1. This, along with correlated slow oscillatory field and multiunit activity in superficial entorhinal cortex suggests that the hippocampal SO may be coordinated with slow neocortical activity through input arriving via the temporo-ammonic pathway. This novel state may present a favorable milieu for synchronization-dependent synaptic plasticity within and between hippocampal and neocortical ensembles.
منابع مشابه
Slow oscillation state facilitates epileptiform events in the hippocampus.
In mesial temporal lobe (MTL) epilepsy, which typically involves the hippocampus (HPC), epileptiform events are enhanced during slow wave sleep (SWS). It remains unclear how and why the electroencephalographic (EEG) states that constitute SWS might predispose the HPC to this type of pathological activity. Recently our laboratory has described a novel state of deactivated hippocampal EEG activit...
متن کاملSleep in the Human Hippocampus: A Stereo-EEG Study
BACKGROUND There is compelling evidence indicating that sleep plays a crucial role in the consolidation of new declarative, hippocampus-dependent memories. Given the increasing interest in the spatiotemporal relationships between cortical and hippocampal activity during sleep, this study aimed to shed more light on the basic features of human sleep in the hippocampus. METHODOLOGY/PRINCIPAL FI...
متن کاملHippocampal sharp wave-ripples linked to slow oscillations in rat slow-wave sleep.
Slow oscillations originating in the prefrontal neocortex during slow-wave sleep (SWS) group neuronal network activity and thereby presumably support the consolidation of memories. Here, we investigated whether the grouping influence of slow oscillations extends to hippocampal sharp wave-ripple (SPW) activity thought to underlie memory replay processes during SWS. The prefrontal surface EEG and...
متن کاملLevel of arousal during the small irregular activity state in the rat hippocampal EEG.
The sleeping rat cycles between two well-characterized hippocampal physiological states, large irregular activity (LIA) during slow-wave sleep (SWS) and theta activity during rapid-eye-movement sleep (REM). A third, less well-characterized electroencephalographic (EEG) state, termed "small irregular activity" (SIA), has been reported to occur when an animal is startled out of sleep without movi...
متن کاملDecoupling of Sleep-Dependent Cortical and Hippocampal Interactions in a Neurodevelopmental Model of Schizophrenia
Rhythmic neural network activity patterns are defining features of sleep, but interdependencies between limbic and cortical oscillations at different frequencies and their functional roles have not been fully resolved. This is particularly important given evidence linking abnormal sleep architecture and memory consolidation in psychiatric diseases. Using EEG, local field potential (LFP), and un...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- The Journal of neuroscience : the official journal of the Society for Neuroscience
دوره 26 23 شماره
صفحات -
تاریخ انتشار 2006